| ▼Linear systems | Solve \(AX = B\) |
| ►General non-symmetric: LU | |
| Driver | Solve \(AX = B\) |
| Computational | Factor, forward and back solve, invert |
| Target implementations | |
| Internal | |
| Tile | |
| ►General non-symmetric, band: LU | |
| Driver | Solve \(AX = B\) |
| Computational | Factor, forward and back solve |
| Target implementations | |
| ►Positive definite: Cholesky | |
| Driver | Solve \(AX = B\) |
| Computational | Factor, forward and back solve, invert |
| Target implementations | |
| Internal | |
| Tile | |
| ►Positive definite, band: Cholesky | |
| Driver | Solve \(AX = B\) |
| Computational | Factor, forward and back solve |
| Target implementations | |
| ►Hermitian/symmetric indefinite: Aasen | |
| Driver | Solve \(AX = B\) |
| Computational | Factor, forward and back solve |
| Target implementations | |
| ►Triangular | |
| Computational | Inverse, multiply |
| Target implementations | |
| Internal | |
| Tile | |
| ►Utilities | |
| Permute, internal | |
| ▼Least squares | Solve \(AX \cong B\) |
| Linear least squares | Solve \(AX \cong B\), over-determined (tall \(A\)) or under-determined (wide \(A\)) |
| ▼Orthogonal/unitary factorizations (QR, etc.) | |
| ►QR | |
| Computational | Factor \(A = QR\), multiply by \(Q\), generate \(Q\) |
| Target implementations | |
| Internal | |
| Tile | |
| ►LQ | |
| Computational | Factor \(A = LQ\), multiply by \(Q\), generate \(Q\) |
| Target implementations | |
| Internal | |
| Tile | |
| ▼Symmetric/Hermitian eigenvalues | |
| Driver | \(Ax = \lambda x\) |
| Computational | |
| Target implementations | |
| Target implementations | |
| Internal | |
| ▼generalized Symmetric/Hermitian-definite eigenvalues | |
| Driver | \(Ax = \lambda B x\), etc |
| Computational | |
| Target implementations | |
| Internal | |
| Tile | |
| ▼Singular Value Decomposition (SVD) | |
| Driver | \(A = U \Sigma V^H\) |
| Computational | |
| Target implementations | |
| ▼Level 2 BLAS and Auxiliary: O(n^2) work | Matrix and Matrix-vector operations that perform \(O(n^2)\) work on \(O(n^2)\) data |
| ►Initialize and copy | |
| Set matrix elements | |
| Copy matrix | |
| Generate test matrix | |
| ►Matrix norms | |
| Driver | \(\left\lVert A \right\rVert\) (one, inf, fro, max) |
| Target implementations | |
| Internal | |
| Tile | |
| ►Parellel BLAS (PBLAS) | |
| add: Add matrices | \(B = \alpha A + \beta B\) |
| ►Target implementations | |
| set | |
| scale | |
| copy | |
| add | |
| ►Internal | Internal routines implement one step of BLAS routine |
| set | |
| scale | |
| copy | |
| add | |
| ►Tile | Tile routines |
| set | |
| scale | |
| copy | |
| swap | |
| add | |
| gemv | |
| symv | |
| ger | |
| her2 | |
| ►Condition number estimate | |
| Driver | \(rcond = \frac{1}{\|\|A\|\| \times \|\|A^{-1}\|\|}\) |
| ▼Level 3 BLAS: O(n^3) work | Matrix-matrix operations that perform \(O(n^3)\) work on \(O(n^2)\) data |
| ►Parellel BLAS (PBLAS) | |
| gemm: General matrix multiply | \(C = \alpha A B + \beta C\) |
| gbmm: General band matrix multiply | \(C = \alpha A B + \beta C\) where \(A\) or \(B\) is band |
| hemm: Hermitian matrix multiply | \(C = \alpha A B + \beta C\) or \(C = \alpha B A + \beta C\) where \(A\) is Hermitian |
| hbmm: Hermitian band matrix multiply | \(C = \alpha A B + \beta C\) or \(C = \alpha B A + \beta C\) where \(A\) is Hermitian |
| herk: Hermitian rank k update | \(C = \alpha A A^H + \beta C\) where \(C\) is Hermitian |
| her2k: Hermitian rank 2k update | \(C = \alpha A B^H + \alpha B A^H + \beta C\) where \(C\) is Hermitian |
| symm: Symmetric matrix multiply | \(C = \alpha A B + \beta C\) or \(C = \alpha B A + \beta C\) where \(A\) is symmetric |
| syrk: Symmetric rank k update | \(C = \alpha A A^T + \beta C\) where \(C\) is symmetric |
| syr2k: Symmetric rank 2k update | \(C = \alpha A B^T + \alpha B A^T + \beta C\) where \(C\) is symmetric |
| trmm: Triangular matrix multiply | \(B = \alpha A B\) or \(B = \alpha B A\) where \(A\) is triangular |
| trsm: Triangular solve matrix | \(C = A^{-1} B\) or \(C = B A^{-1}\) where \(A\) is triangular |
| tbsm: Triangular solve band matrix | \(C = A^{-1} B\) or \(C = B A^{-1}\) where \(A\) is band triangular |
| ►Target implementations | |
| gemm: General matrix multiply | |
| gbmm: General band matrix multiply | |
| hemm: Hermitian matrix multiply | |
| hbmm: Hermitian band matrix multiply | |
| herk: Hermitian rank k update | |
| her2k: Hermitian rank 2k update | |
| symm: Symmetric matrix multiply | |
| syrk: Symmetric rank k update | |
| syr2k: Symmetric rank 2k update | |
| trmm: Triangular matrix multiply | |
| trsm: Triangular solve matrix | |
| tbsm: Triangular solve band matrix | |
| ►Internal | Internal routines implement one step of BLAS routine, e.g., one block outer product |
| gemm: General matrix multiply | |
| hemm: Hermitian matrix multiply | |
| herk: Hermitian rank k update | |
| her2k: Hermitian rank 2k update | |
| symm: Symmetric matrix multiply | |
| syrk: Symmetric rank k update | |
| syr2k: Symmetric rank 2k update | |
| trmm: Triangular matrix multiply | |
| trsm: Triangular solve matrix | |
| ►Tile | |
| gemm: General matrix multiply | |
| hemm: Hermitian matrix multiply | |
| herk: Hermitian rank k update | |
| her2k: Hermitian rank 2k update | |
| symm: Symmetric matrix multiply | |
| syrk: Symmetric rank k update | |
| syr2k: Symmetric rank 2k update | |
| trmm: Triangular matrix multiply | |
| trsm: Triangular solve matrix | |
| Enumerations | |
| ▼Utilities | |
| Constructor functions | Useful functions for SLATE's "lambda" constructors |