|
SLATE 2024.05.31
Software for Linear Algebra Targeting Exascale
|
\(C = \alpha A A^T + \beta C\) where \(C\) is symmetric More...
Functions | |
| template<typename scalar_t > | |
| void | slate::syrk (scalar_t alpha, Matrix< scalar_t > &A, scalar_t beta, SymmetricMatrix< scalar_t > &C, Options const &opts) |
| Distributed parallel symmetric rank k update. | |
\(C = \alpha A A^T + \beta C\) where \(C\) is symmetric
| void slate::syrk | ( | scalar_t | alpha, |
| Matrix< scalar_t > & | A, | ||
| scalar_t | beta, | ||
| SymmetricMatrix< scalar_t > & | C, | ||
| Options const & | opts | ||
| ) |
Distributed parallel symmetric rank k update.
Performs the symmetric rank k operation
\[ C = \alpha A A^T + \beta C, \]
where alpha and beta are scalars, C is an n-by-n symmetric matrix, and A is an n-by-k matrix. The matrices can be transposed beforehand, e.g.,
auto AT = slate::transpose( A ); slate::syrk( alpha, AT, beta, C );
| scalar_t | One of float, double, std::complex<float>, std::complex<double>. |
| [in] | alpha | The scalar alpha. |
| [in] | A | The n-by-k matrix A. |
| [in] | beta | The scalar beta. |
| [in,out] | C | On entry, the n-by-n symmetric matrix C. On exit, overwritten by the result \(C = \alpha A A^T + \beta C\). |
| [in] | opts | Additional options, as map of name = value pairs. Possible options:
|