SLATE 2024.05.31
Software for Linear Algebra Targeting Exascale
All Classes Namespaces Functions Variables Typedefs Enumerations Enumerator Friends Modules Pages
gbmm: General band matrix multiply

\(C = \alpha A B + \beta C\) where \(A\) or \(B\) is band More...

Functions

template<typename scalar_t >
void slate::gbmm (scalar_t alpha, BandMatrix< scalar_t > &A, Matrix< scalar_t > &B, scalar_t beta, Matrix< scalar_t > &C, Options const &opts)
 Distributed parallel general matrix-matrix multiplication.
 

Detailed Description

\(C = \alpha A B + \beta C\) where \(A\) or \(B\) is band

Function Documentation

◆ gbmm()

template<typename scalar_t >
void slate::gbmm ( scalar_t  alpha,
BandMatrix< scalar_t > &  A,
Matrix< scalar_t > &  B,
scalar_t  beta,
Matrix< scalar_t > &  C,
Options const &  opts 
)

Distributed parallel general matrix-matrix multiplication.

Performs the matrix-matrix operation

\[ C = \alpha A B + \beta C, \]

where alpha and beta are scalars, and \(A\), \(B\), and \(C\) are matrices, with \(A\) an m-by-k band matrix, \(B\) a k-by-n matrix, and \(C\) an m-by-n matrix. The matrices can be transposed or conjugate-transposed beforehand, e.g.,

auto AT = slate::transpose( A );
auto BT = slate::conj_transpose( B );
slate::gbmm( alpha, AT, BT, beta, C );
Template Parameters
scalar_tOne of float, double, std::complex<float>, std::complex<double>.
Parameters
[in]alphaThe scalar alpha.
[in]AThe m-by-k band matrix A.
[in]BThe k-by-n matrix B.
[in]betaThe scalar beta.
[in,out]COn entry, the m-by-n matrix C. On exit, overwritten by the result \(\alpha A B + \beta C\).
[in]optsAdditional options, as map of name = value pairs. Possible options:
  • Option::Lookahead: Number of blocks to overlap communication and computation. lookahead >= 0. Default 1.
  • Option::Target: Implementation to target. Possible values:
    • HostTask: OpenMP tasks on CPU host [default].
    • HostNest: nested OpenMP parallel for loop on CPU host.
    • HostBatch: batched BLAS on CPU host.
    • Devices: batched BLAS on GPU device.