|
SLATE 2024.05.31
Software for Linear Algebra Targeting Exascale
|
Modules | |
| gemm: General matrix multiply | |
| \(C = \alpha A B + \beta C\) | |
| gbmm: General band matrix multiply | |
| \(C = \alpha A B + \beta C\) where \(A\) or \(B\) is band | |
| hemm: Hermitian matrix multiply | |
| \(C = \alpha A B + \beta C\) or \(C = \alpha B A + \beta C\) where \(A\) is Hermitian | |
| hbmm: Hermitian band matrix multiply | |
| \(C = \alpha A B + \beta C\) or \(C = \alpha B A + \beta C\) where \(A\) is Hermitian | |
| herk: Hermitian rank k update | |
| \(C = \alpha A A^H + \beta C\) where \(C\) is Hermitian | |
| her2k: Hermitian rank 2k update | |
| \(C = \alpha A B^H + \alpha B A^H + \beta C\) where \(C\) is Hermitian | |
| symm: Symmetric matrix multiply | |
| \(C = \alpha A B + \beta C\) or \(C = \alpha B A + \beta C\) where \(A\) is symmetric | |
| syrk: Symmetric rank k update | |
| \(C = \alpha A A^T + \beta C\) where \(C\) is symmetric | |
| syr2k: Symmetric rank 2k update | |
| \(C = \alpha A B^T + \alpha B A^T + \beta C\) where \(C\) is symmetric | |
| trmm: Triangular matrix multiply | |
| \(B = \alpha A B\) or \(B = \alpha B A\) where \(A\) is triangular | |
| trsm: Triangular solve matrix | |
| \(C = A^{-1} B\) or \(C = B A^{-1}\) where \(A\) is triangular | |
| tbsm: Triangular solve band matrix | |
| \(C = A^{-1} B\) or \(C = B A^{-1}\) where \(A\) is band triangular | |