\(\left\lVert A \right\rVert\) (one, inf, fro, max)
More...
|
| template<typename matrix_type > |
| void | slate::colNorms (Norm in_norm, matrix_type &A, blas::real_type< typename matrix_type::value_type > *values, Options const &opts) |
| | Distributed parallel matrix norm.
|
| |
| template<typename matrix_type > |
| blas::real_type< typename matrix_type::value_type > | slate::norm (Norm in_norm, matrix_type &A, Options const &opts) |
| | Distributed parallel general matrix norm.
|
| |
\(\left\lVert A \right\rVert\) (one, inf, fro, max)
◆ colNorms()
template<typename matrix_type >
| void slate::colNorms |
( |
Norm |
in_norm, |
|
|
matrix_type & |
A, |
|
|
blas::real_type< typename matrix_type::value_type > * |
values, |
|
|
Options const & |
opts |
|
) |
| |
Distributed parallel matrix norm.
- Template Parameters
-
- Parameters
-
| [in] | in_norm | Norm to compute:
- Norm::Max: maximum element, \(\max_{i, j} \abs{ A_{i, j} }\)
- Norm::One: maximum column sum, \(\max_j \sum_i \abs{ A_{i, j} }\)
- Norm::Inf: maximum row sum, \(\max_i \sum_j \abs{ A_{i, j} }\) For symmetric and Hermitian matrices, the One and Inf norms are the same.
- Norm::Fro: Frobenius norm, \(\sqrt{ \sum_{i, j} \abs{ A_{i, j} }^2 }\)
|
| [in] | A | The matrix A. |
| [out] | values | todo: undocumented. |
| [in] | opts | Additional options, as map of name = value pairs. Possible options:
- Option::Target: Implementation to target. Possible values:
- HostTask: OpenMP tasks on CPU host [default].
- HostNest: nested OpenMP parallel for loop on CPU host.
- Devices: batched BLAS on GPU device.
|
◆ norm()
template<typename matrix_type >
| blas::real_type< typename matrix_type::value_type > slate::norm |
( |
Norm |
in_norm, |
|
|
matrix_type & |
A, |
|
|
Options const & |
opts |
|
) |
| |
Distributed parallel general matrix norm.
- Template Parameters
-
- Parameters
-
| [in] | in_norm | Norm to compute:
- Norm::Max: maximum element, \(\max_{i, j} \abs{ A_{i, j} }\)
- Norm::One: maximum column sum, \(\max_j \sum_i \abs{ A_{i, j} }\)
- Norm::Inf: maximum row sum, \(\max_i \sum_j \abs{ A_{i, j} }\) For symmetric and Hermitian matrices, the One and Inf norms are the same.
- Norm::Fro: Frobenius norm, \(\sqrt{ \sum_{i, j} \abs{ A_{i, j} }^2 }\)
|
| [in] | A | The matrix A. |
| [in] | opts | Additional options, as map of name = value pairs. Possible options:
- Option::Target: Implementation to target. Possible values:
- HostTask: OpenMP tasks on CPU host [default].
- HostNest: nested OpenMP parallel for loop on CPU host.
- Devices: batched BLAS on GPU device.
|