|
PLASMA
Parallel Linear Algebra Software for Multicore Architectures
|
Matrix operations that perform \( O(n^2) \) work on \( O(n^2) \) data. These are memory bound, since every operation requires a memory read or write. More...
Modules | |
| geadd: Add matrices | |
| \( B = \alpha A + \beta B \) | |
| gemv: General matrix-vector multiply | |
| \( y = \alpha Ax + \beta y \) | |
| ger: General matrix rank 1 update | |
| \( A = \alpha xy^T + A \) | |
| hemv: Hermitian matrix-vector multiply | |
| \( y = \alpha Ax + \beta y \) | |
| her: Hermitian rank 1 update | |
| \( A = \alpha xx^T + A \) | |
| her2: Hermitian rank 2 update | |
| \( A = \alpha xy^T + \alpha yx^T + A \) | |
| symv: Symmetric matrix-vector multiply | |
| \( y = \alpha Ax + \beta y \) | |
| syr: Symmetric rank 1 update | |
| \( A = \alpha xx^T + A \) | |
| syr2: Symmetric rank 2 update | |
| \( A = \alpha xy^T + \alpha yx^T + A \) | |
| trmv: Triangular matrix-vector multiply | |
| \( x = Ax \) | |
| trsv: Triangular matrix-vector solve | |
| \( x = op(A^{-1})\; b \) | |
| lacpy: Copy matrix | |
| \( B = A \) | |
| lascl: Scale matrix by scalar | |
| \( A = \alpha A \) | |
| lascl2: Scale matrix by diagonal | |
| \( A = D A \) | |
| laset: Set matrix to constants | |
| \( A_{ij} = \) diag if \( i=j \); \( A_{ij} = \) offdiag otherwise. | |
Matrix operations that perform \( O(n^2) \) work on \( O(n^2) \) data. These are memory bound, since every operation requires a memory read or write.