BLAS++
2024.05.31
BLAS C++ API
Loading...
Searching...
No Matches
Routines
Here is a list of all modules:
[detail level
1
2
]
▼
Level 1: vectors operations, O(n) work
Vector operations that perform \(O(n)\) work on \(O(n)\) data
asum: Vector 1 norm (sum)
\(\sum_i |Re(x_i)| + |Im(x_i)|\)
axpy: Add vectors
\(y = \alpha x + y\)
copy: Copy vector
\(y = x\)
dot: Dot (inner) product
\(x^H y\)
dotu: Dot (inner) product, unconjugated
\(x^T y\)
iamax: Find max element
\(\text{argmax}_i\; |x_i|\)
nrm2: Vector 2 norm
\(||x||_2\)
rot: Apply Givens plane rotation
rotg: Generate Givens plane rotation
rotm: Apply modified (fast) Givens plane rotation
rotmg: Generate modified (fast) Givens plane rotation
scal: Scale vector
\(x = \alpha x\)
swap: Swap vectors
\(x \leftrightarrow y\)
▼
Level 2: matrix-vector operations, O(n^2) work
Matrix operations that perform \(O(n^2)\) work on \(O(n^2)\) data
gemv: General matrix-vector multiply
\(y = \alpha Ax + \beta y\)
ger: General matrix rank 1 update
\(A = \alpha xy^H + A\)
geru: General matrix rank 1 update, unconjugated
\(A = \alpha xy^T + A\)
hemv: Hermitian matrix-vector multiply
\(y = \alpha Ax + \beta y\)
her: Hermitian rank 1 update
\(A = \alpha xx^H + A\)
her2: Hermitian rank 2 update
\(A = \alpha xy^H + conj(\alpha) yx^H + A\)
symv: Symmetric matrix-vector multiply
\(y = \alpha Ax + \beta y\)
syr: Symmetric rank 1 update
\(A = \alpha xx^T + A\)
syr2: Symmetric rank 2 update
\(A = \alpha xy^T + \alpha yx^T + A\)
trmv: Triangular matrix-vector multiply
\(x = Ax\)
trsv: Triangular matrix-vector solve
\(x = op(A^{-1})\; b\)
▼
Level 3: matrix-matrix operations, O(n^3) work
Matrix-matrix operations that perform \(O(n^3)\) work on \(O(n^2)\) data
gemm: General matrix multiply
\(C = \alpha \;op(A) \;op(B) + \beta C\)
hemm: Hermitian matrix multiply
\(C = \alpha A B + \beta C\) or \(C = \alpha B A + \beta C\) where \(A\) is Hermitian
herk: Hermitian rank k update
\(C = \alpha A A^H + \beta C\) where \(C\) is Hermitian
her2k: Hermitian rank 2k update
\(C = \alpha A B^H + conj(\alpha) B A^H + \beta C\) where \(C\) is Hermitian
symm: Symmetric matrix multiply
\(C = \alpha A B + \beta C\) or \(C = \alpha B A + \beta C\) where \(A\) is symmetric
syrk: Symmetric rank k update
\(C = \alpha A A^T + \beta C\) where \(C\) is symmetric
syr2k: Symmetric rank 2k update
\(C = \alpha A B^T + \alpha B A^T + \beta C\) where \(C\) is symmetric
trmm: Triangular matrix multiply
\(B = \alpha \;op(A)\; B\) or \(B = \alpha B \;op(A)\) where \(A\) is triangular
trsm: Triangular solve matrix
\(C = op(A)^{-1} B \) or \(C = B \;op(A)^{-1}\) where \(A\) is triangular
▼
Level 1: internal routines.
Internal low-level and mid-level wrappers
asum: Vector 1 norm (sum)
axpy: Add vectors
copy: Copy vector
dot: Dot (inner) product
dotu: Dot (inner) product, unconjugated
iamax: Find max element
nrm2: Vector 2 norm
rot: Apply Givens plane rotation
rotg: Generate Givens plane rotation
rotm: Apply modified (fast) Givens plane rotation
rotmg: Generate modified (fast) Givens plane rotation
scal: Scale vector
swap: Swap vectors
▼
Level 2: internal routines.
Internal low-level and mid-level wrappers
gemv: General matrix-vector multiply
ger: General matrix rank 1 update
geru: General matrix rank 1 update, unconjugated
hemv: Hermitian matrix-vector multiply
her: Hermitian rank 1 update
her2: Hermitian rank 2 update
symv: Symmetric matrix-vector multiply
syr: Symmetric rank 1 update
syr2: Symmetric rank 2 update
trmv: Triangular matrix-vector multiply
trsv: Triangular matrix-vector solve
▼
Level 3: internal routines.
Internal low-level and mid-level wrappers
gemm: General matrix multiply
hemm: Hermitian matrix multiply
herk: Hermitian rank k update
her2k: Hermitian rank 2k update
symm: Symmetric matrix multiply
syrk: Symmetric rank k update
syr2k: Symmetric rank 2k update
trmm: Triangular matrix multiply
trsm: Triangular solve matrix
Generated by
1.9.7