BLAS++ 2024.05.31
BLAS C++ API
Loading...
Searching...
No Matches
Routines
Here is a list of all modules:
[detail level 12]
 Level 1: vectors operations, O(n) workVector operations that perform \(O(n)\) work on \(O(n)\) data
 asum: Vector 1 norm (sum)\(\sum_i |Re(x_i)| + |Im(x_i)|\)
 axpy: Add vectors\(y = \alpha x + y\)
 copy: Copy vector\(y = x\)
 dot: Dot (inner) product\(x^H y\)
 dotu: Dot (inner) product, unconjugated\(x^T y\)
 iamax: Find max element\(\text{argmax}_i\; |x_i|\)
 nrm2: Vector 2 norm\(||x||_2\)
 rot: Apply Givens plane rotation
 rotg: Generate Givens plane rotation
 rotm: Apply modified (fast) Givens plane rotation
 rotmg: Generate modified (fast) Givens plane rotation
 scal: Scale vector\(x = \alpha x\)
 swap: Swap vectors\(x \leftrightarrow y\)
 Level 2: matrix-vector operations, O(n^2) workMatrix operations that perform \(O(n^2)\) work on \(O(n^2)\) data
 gemv: General matrix-vector multiply\(y = \alpha Ax + \beta y\)
 ger: General matrix rank 1 update\(A = \alpha xy^H + A\)
 geru: General matrix rank 1 update, unconjugated\(A = \alpha xy^T + A\)
 hemv: Hermitian matrix-vector multiply\(y = \alpha Ax + \beta y\)
 her: Hermitian rank 1 update\(A = \alpha xx^H + A\)
 her2: Hermitian rank 2 update\(A = \alpha xy^H + conj(\alpha) yx^H + A\)
 symv: Symmetric matrix-vector multiply\(y = \alpha Ax + \beta y\)
 syr: Symmetric rank 1 update\(A = \alpha xx^T + A\)
 syr2: Symmetric rank 2 update\(A = \alpha xy^T + \alpha yx^T + A\)
 trmv: Triangular matrix-vector multiply\(x = Ax\)
 trsv: Triangular matrix-vector solve\(x = op(A^{-1})\; b\)
 Level 3: matrix-matrix operations, O(n^3) workMatrix-matrix operations that perform \(O(n^3)\) work on \(O(n^2)\) data
 gemm: General matrix multiply\(C = \alpha \;op(A) \;op(B) + \beta C\)
 hemm: Hermitian matrix multiply\(C = \alpha A B + \beta C\) or \(C = \alpha B A + \beta C\) where \(A\) is Hermitian
 herk: Hermitian rank k update\(C = \alpha A A^H + \beta C\) where \(C\) is Hermitian
 her2k: Hermitian rank 2k update\(C = \alpha A B^H + conj(\alpha) B A^H + \beta C\) where \(C\) is Hermitian
 symm: Symmetric matrix multiply\(C = \alpha A B + \beta C\) or \(C = \alpha B A + \beta C\) where \(A\) is symmetric
 syrk: Symmetric rank k update\(C = \alpha A A^T + \beta C\) where \(C\) is symmetric
 syr2k: Symmetric rank 2k update\(C = \alpha A B^T + \alpha B A^T + \beta C\) where \(C\) is symmetric
 trmm: Triangular matrix multiply\(B = \alpha \;op(A)\; B\) or \(B = \alpha B \;op(A)\) where \(A\) is triangular
 trsm: Triangular solve matrix\(C = op(A)^{-1} B \) or \(C = B \;op(A)^{-1}\) where \(A\) is triangular
 Level 1: internal routines.Internal low-level and mid-level wrappers
 asum: Vector 1 norm (sum)
 axpy: Add vectors
 copy: Copy vector
 dot: Dot (inner) product
 dotu: Dot (inner) product, unconjugated
 iamax: Find max element
 nrm2: Vector 2 norm
 rot: Apply Givens plane rotation
 rotg: Generate Givens plane rotation
 rotm: Apply modified (fast) Givens plane rotation
 rotmg: Generate modified (fast) Givens plane rotation
 scal: Scale vector
 swap: Swap vectors
 Level 2: internal routines.Internal low-level and mid-level wrappers
 gemv: General matrix-vector multiply
 ger: General matrix rank 1 update
 geru: General matrix rank 1 update, unconjugated
 hemv: Hermitian matrix-vector multiply
 her: Hermitian rank 1 update
 her2: Hermitian rank 2 update
 symv: Symmetric matrix-vector multiply
 syr: Symmetric rank 1 update
 syr2: Symmetric rank 2 update
 trmv: Triangular matrix-vector multiply
 trsv: Triangular matrix-vector solve
 Level 3: internal routines.Internal low-level and mid-level wrappers
 gemm: General matrix multiply
 hemm: Hermitian matrix multiply
 herk: Hermitian rank k update
 her2k: Hermitian rank 2k update
 symm: Symmetric matrix multiply
 syrk: Symmetric rank k update
 syr2k: Symmetric rank 2k update
 trmm: Triangular matrix multiply
 trsm: Triangular solve matrix